= !iddilldnw

Defuse: A Dependency Gwded
Function Scheduler to Mitigate Cold
Starts on FaaS Platforms

Jiacheng Shent, Tianyi Yang?!, Yuxin Su?, Yangfan Zhou?? and Michael Lyu?

! Department of Computer Science and Engineering, The Chinese University of Hong Kong

2 School of Computer Science, Fudan University

3 Shanghai Key Laboratory of Intelligent Information Processing

AN ARISE &

d Reliabl i
”. B S

HHEFLXE
The Chinese Uruver51ty of Hong Kong

J
%‘

Contents

« Background
* Approach
 Evaluation

e Conclusion

Background — FaaS

FaaS = Function as a Service
Serverless functions -> monolithic applications
Less management burden

Emerging Paradigm:
« AWS Lambda, Google Cloud Functions, Azure Functions, ...

Google
Cloud Azure Functions
Functions

AWS Lambda

Background — FaaS

The process of invoking a serverless function (Critical Path):
« Create and initialize a container.
* Load user code to the container.
« Execute user code.
* Reply with the results.

Speedup: pre-create some containers in memaory.

Cold Start: Function is invoked without any instance of it loaded.
Cold starts are inevitable!

Background — Scheduling Problem

Scheduling Method

Function Loaded * Cold Start

. Function Execution g Warm Start

Determine two parameters:
1. Pre-warm time

2. Keep-alive time

Background — Current Method

Coarse-grained Scheduling
« Schedules functions at the granularity of applications.
 Not all functions in an application are required for an invocation.

17.5
£33 64.7% of functions are invoked less than 0.25.
o {2”5) _ e——

. Glzlﬂvocg}:“ion l:rl;:!)é]ﬁuen(:‘,fﬂIE= "o PrOblemS
(a) Histogram of Function Invocation Frequency

Y T I e e R ~ 1 1. Memory waste.
b
se 2. Increased cold-start overhead.

012345678 91011121314151617181920212223
Function ID

(b) Invocation Frequencies of Functions in an Application

Background — Current Method

Unpredictable functions/applications
« Unpredictable functions are ubiquitous.

14% applications have CV less than 5.
32% functions have CV less than 5.

Probability
Density

e T e N e T e T s Y e

B3 bW ke L

T=25 0.0 25 "5-.?1] 7.5 0 125 150 175 ProblemS'

Application Coefficient of Variation

(a) CV Histogram of Applications

1. Cold starts incurred by them.

Probabllity
Density

2. Cannot schedule in a finer granularity.

—£.3 0.0 23 5.0 .4 10.0 12.5 15.0 1505
Function Coefficient of Variation

(b) CV Histogram of Functions

Background — Function Dependency

Dependencies of Serverless Functions
» Serverless functions are APIs.
* The usage pattern of clients -> Dependency

Implications:

1. Can be leveraged to reduce memory wastes.

2. Can be used to solve unpredictable functions.

Approach

A
1

Function
Invocation
History

Dependency
Mining

Section IV.E

»

ki

Function

“ 22 Dependency

Graph

Dependency

Set Generation

Section IV.C

»

L
-
-
I:I

el |

]

Function
Dependency
Set

Scheduling

o—

3
Section IV.D

O Scheduler

Approach — Dependency Mining

Definition of Two Types of Dependencies

« Strong Dependency: Function f, and function f;, have strong
dependency iff. 1) they belong to the same client and 2) there Is high
probability of them being simultaneously invoked in a small time window.

* Weak Dependency: Function f, have weak dependency on function f
Iff. 1) they belong to the same client and 2) there is high probabillity that
f, Is Invoked under the condition that f;, Is invoked.

Approach — Dependency Mining

Intuitions behind Two Types of Dependencies

« Strong Dependency:
* Bi-directional relationship.
« Relationship between predictable functions.

 Weak Dependency:
« Uni-directional relationship.
« Relationship between unpredictable and predictable functions.

11

Approach — Dependency Mining

Strong Dependency Mining

* Frequent Pattern Mining

 Divide invocation records of functions of a client into time bins.
* For each time bin:
« Construct a transaction as all the functions invoked during that bin.
« Conduct frequent pattern mining on the constructed transactions.
« Repeat for each user.

* Frequent itemset

* Functions will be invoked with probability greater than the support.

12

Approach — Dependency Mining

Weak Dependency Mining

 Positive Point-wise Mutual Information

« Suppose the probability of function f, and f; being invoked individually is P, and
P,.

« The probability of them being invoked together is P,,.
* PPMI(fq, fp) = max(0, PMI(fq, fp))

Pa
* PMI(fy, fy) = logz .5

* Intuition:
« PMI(f,,fp) > 0->P,, > P, *P,->f, depends on f;.

13

Approach — Dependency Mining

Weak Dependency Mining

« Use Coefficient of Variation to distinguish unpredictable function from
predictable ones.

« Construct a co-occurrence matrix.
 Calculate PPMI for each pair of functions.
» Select top-k as weak dependency.

14

Approach — Dependency Set Generation

Dependency Set 1

: Strong Dependency <—>
: Weak Dependency ------- -
. Serverless Function o (A

N 4

Dependency Set 2

 Generate sets of functions to
facilitate scheduling.

« Construct a function dependency
graph based on the mined
relationships.

« Conduct union-find to generate
dependency sets.

15

Approach — Scheduling

e Similar to [2], use histograms of R s |

: : @
- . : ind Yes chedule based on | : MAMmic
d e p e n d e n Cy Set I nVOcatI O n . NE?’ _} Deper][;(‘iency Set I > IT his[ggram _I-} I[’i'ye-warm
1 unction - Keep-alive
I n te rval S - lavocation L—) Predictable? ’
| | . .0
. 10-minute fixed [_:)
- No keep-;live _) Ke?liiﬂve
e Predictable sets: e e e e e e —————aas, oo p-e
« Pre-warm: 5" percentile.
. Keep_al ive: 95th perce Nntile A Pre-warm | Keep-alive
' ' Time Time

gsth percentile | o F

« Unpredictable sets:
« 10-minute fixed timeout.

CDF

Sﬂq per::entile

Idle Time

16
]

Evaluation

Evaluation Method:
« Conduct simulation on Azure function dataset released by [2].

Baseline Methods
* Hybrid-Application|[2]
« Hybrid-Function: Directly apply [2] to the function level.

Evaluation

How effective Is Defuse compared with other scheduling methods?

Defuse
Hybrid-Function
Hybrid-Application

c o o o ©
(W8] (V8] g = i o
w

75-p Function Cold-Start Rate
o
=

o
2

08 09 10 11 12 13 1.4
Normalized Memory Usage

Evaluation

What are the contributions of weak and strong dependency?

—— Strong 4+ Weak (S+W)
Strong-Only (5-0)
i - Weak-Only (W-0)
00O 02 04 06 08 1.0

(a) Function Cold Start Rate

Normalized Memory Usage

<
5]

=
l—l

@ o H
w O o

o
~

S<+W 5-0 W-0O
(b) Method

19

Conclusion

* The first method to schedule serverless functions based on their
dependencies.

« Add another dimension to the cold-start mitigation on FaaS platforms.

« Compatible with current scheduling methods.

Thank you!

)
) w#xvxxs
oL (4 . The Chinese University of Hong Kong

