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Background — FaaS

FaaS = Function as a Service
Serverless functions -> monolithic applications
Less management burden

Emerging Paradigm:
« AWS Lambda, Google Cloud Functions, Azure Functions, ...

Google
Cloud Azure Functions
Functions

AWS Lambda




Background — FaaS

The process of invoking a serverless function (Critical Path):
« Create and initialize a container.
* Load user code to the container.
« Execute user code.
* Reply with the results.

Speedup: pre-create some containers in memaory.

Cold Start: Function is invoked without any instance of it loaded.
Cold starts are inevitable!




Background — Scheduling Problem

Scheduling Method

Function Loaded * Cold Start

. Function Execution g Warm Start

Determine two parameters:
1. Pre-warm time

2. Keep-alive time



Background — Current Method

Coarse-grained Scheduling
« Schedules functions at the granularity of applications.
 Not all functions in an application are required for an invocation.
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Background — Current Method

Unpredictable functions/applications
« Unpredictable functions are ubiquitous.

14% applications have CV less than 5.
32% functions have CV less than 5.
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1. Cold starts incurred by them.
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2. Cannot schedule in a finer granularity.
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Background — Function Dependency

Dependencies of Serverless Functions
» Serverless functions are APIs.
* The usage pattern of clients -> Dependency

Implications:

1. Can be leveraged to reduce memory wastes.

2. Can be used to solve unpredictable functions.



Approach
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Approach — Dependency Mining

Definition of Two Types of Dependencies

« Strong Dependency: Function f, and function f;, have strong
dependency iff. 1) they belong to the same client and 2) there Is high
probability of them being simultaneously invoked in a small time window.

* Weak Dependency: Function f, have weak dependency on function f
Iff. 1) they belong to the same client and 2) there is high probabillity that
f, Is Invoked under the condition that f;, Is invoked.



Approach — Dependency Mining

Intuitions behind Two Types of Dependencies

« Strong Dependency:
* Bi-directional relationship.
« Relationship between predictable functions.

 Weak Dependency:
« Uni-directional relationship.
« Relationship between unpredictable and predictable functions.
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Approach — Dependency Mining

Strong Dependency Mining

* Frequent Pattern Mining

 Divide invocation records of functions of a client into time bins.
* For each time bin:
« Construct a transaction as all the functions invoked during that bin.
« Conduct frequent pattern mining on the constructed transactions.
« Repeat for each user.

* Frequent itemset

* Functions will be invoked with probability greater than the support.
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Approach — Dependency Mining

Weak Dependency Mining

 Positive Point-wise Mutual Information

« Suppose the probability of function f, and f; being invoked individually is P, and
P,.

« The probability of them being invoked together is P,,.
* PPMI(fq, fp) = max(0, PMI(fq, fp))

Pa
* PMI(fy, fy) = logz .5

* Intuition:
« PMI(f,,fp) > 0->P,, > P, *P,->f, depends on f;.
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Approach — Dependency Mining

Weak Dependency Mining

« Use Coefficient of Variation to distinguish unpredictable function from
predictable ones.

« Construct a co-occurrence matrix.
 Calculate PPMI for each pair of functions.
» Select top-k as weak dependency.
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Approach — Dependency Set Generation

Dependency Set 1

: Strong Dependency <—>
: Weak Dependency ------- -
. Serverless Function o (A

N 4

Dependency Set 2

 Generate sets of functions to
facilitate scheduling.

« Construct a function dependency
graph based on the mined
relationships.

« Conduct union-find to generate
dependency sets.
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Approach — Scheduling
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Evaluation

Evaluation Method:
« Conduct simulation on Azure function dataset released by [2].

Baseline Methods
* Hybrid-Application|[2]
« Hybrid-Function: Directly apply [2] to the function level.



Evaluation

How effective Is Defuse compared with other scheduling methods?

Defuse
Hybrid-Function
Hybrid-Application

c o o o ©
(W8] (V8] g = i o
w

75-p Function Cold-Start Rate
o
=

o
2

08 09 10 11 12 13 1.4
Normalized Memory Usage



Evaluation

What are the contributions of weak and strong dependency?
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Conclusion

* The first method to schedule serverless functions based on their
dependencies.

« Add another dimension to the cold-start mitigation on FaaS platforms.

« Compatible with current scheduling methods.
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